Tutorial 2

Exercise 1. For each $n \in \mathbb{N}$, define $S_n = 1 \oplus 2 \oplus \cdots \oplus n$.

(i) Find the values of S_{33} and S_{34} .

(ii) Consider the n-pile nim game with position $(1, 2, \dots, n)$.

(1) Find the values of n such that the position $(1, 2, \dots, n)$ is a P-position.

(2) Find all winning moves from the position $(1, 2, \dots, n)$ for n = 33.

(3) Find all winning moves from the position $(1, 2, \dots, n)$ for n = 34.

Solution: (i) By simple calculation, we have

n	1	2	3	4	5	6	7	8	9	10	11	$12\cdots$
S_n	1	3	0	4	1	7	0	8	1	11	1	$12\cdots$

It is easy to prove by induction that

$$Sn = \begin{cases} n & \text{if } n \equiv 0 \pmod{4} \\ 1 & \text{if } n \equiv 1 \pmod{4} \\ n+1 & \text{if } n \equiv 2 \pmod{4} \\ 0 & \text{if } n \equiv 3 \pmod{4} \end{cases}.$$

Since $33 \equiv 1 \pmod{4}$ and $34 \equiv 2 \pmod{4}$, we have $S_{33} = 1$ and $S_{34} = 35$. (ii). (1) The set of P-positions is

$$\{(1, 2, \cdots, 4k+3) : k = 0, 1, \cdots\}.$$

we have all winning moves are: $(1, 2, \dots, k-1, k, k+1, \dots, 33) \rightarrow (1, 2, \dots, k-1, k-1, k-1, k+1, \dots, 33)$ for all odd number k.

(3) Since

$$(0, 0, 0, 0, 0, 1)_{2}$$

$$(0, 0, 0, 0, 0, 1)_{2}$$

$$(0, 0, 0, 0, 0, 1)_{2}$$

$$\vdots$$

$$S_{34} = 1 \oplus 2 \oplus \dots \oplus 34 = (1, 0, 0, 0, 0, 0)_{2}$$

$$(1, 0, 0, 0, 0, 1)_{2}$$

$$(1, 0, 0, 0, 1, 0)_{2}$$

$$(1, 0, 0, 0, 1, 1)_{2} = 35$$

we have all winning moves are: $(1, 2, \dots, 32, 33, 34) \rightarrow (1, 2, \dots, 3, 33, 34)$ or $(1, 2, \dots, 33, 34) \rightarrow (1, 2, \dots, 32, 2, 34)$, or $(1, 2, \dots, 33, 34) \rightarrow (1, 2, \dots, 33, 1)$.

Sprague-Grundy function.

Definition 1. Let X be the set of all possible positions of a combinatorial game. The S-G function is a map $g: X \to \mathbb{N}$ defined by

- (i) g(x) := 0 if x is a terminal position.
- (ii) $g(y) = \min\{k \ge 0, k \notin \{g(x) : x \text{ is a follower of } y\}\}.$

The S-G function is a useful tool designed to find the P-positions of a game, as we have the following proposition.

Proposition 2. Let \mathcal{P} denote the set of *P*-positions and let *g* be the *S*-*G* function of a game. Then we have

$$\mathcal{P} = \{ x \in X : g(x) = 0 \}.$$

Exercise 2. Consider the subtraction game with $S = \{1, 3, 6\}$.

(i) Find g(6), g(13) and g(50).

(ii) Find all winning moves from the position that there are 50 chips.

(iii) Find the set of P-positions and give a proof.

Solution (i) Note that the only terminal position is 0. By backwards induction, we have

It is easy to see that g is periodic with period 9. Indeed,

$$g(x) = \begin{cases} 0 & \text{if } x \equiv 0, 2 \text{ or } 4(\mod 9) \\ 1 & \text{if } x \equiv 1, 3 \text{ or } 5(\mod 9) \\ 2 & \text{if } x \equiv 6 \text{ or } 8(\mod 9) \\ 3 & \text{if } x \equiv 7(\mod 9) \end{cases}$$

Hence we have g(6) = 2, g(13) = 0 and g(50) = 1.

(ii) All winning moves from position 50 are removing 1 or 3 chips.

(iii) We claim that the set of P-positions is given by

$$\mathcal{P} = \{k \in \mathbb{N} : k \equiv 0, 2 \text{ or } 4(\text{mod}9)\}.$$

Proof of the claim: (1). The only terminal position k = 0 is in \mathcal{P} . (2). If $k \equiv 0, 2$ or 4(mod9), then we have $k - 1 \equiv 8, 1$ or 3(mod9), $k - 3 \equiv 6, 8 \text{or1}(\text{mod9})$ and $k - 6 \equiv 3, 5$ or 7(mod9). Hence any position in \mathcal{P} can only be removed to a position outside \mathcal{P} . (3). If $k \not\equiv 2(\text{mod9}), k \not\equiv 4(\text{mod} 9)$ and $k \not\equiv 6(\text{mod9})$, it is easy to see that at least one of k - 1, k - 3 and k - 6 is in \mathcal{P} . By the characterization of P-positions, we finish the proof.